DARPA MEMS Program and Application in Space

William C. Tang, Ph.D.
Program Manager,
MEMS / MPG / NMASP / CSAC
Microsystems Technology Office
Defense Advanced Research Projects Agency

Outline

- Introduction
- Current Thrusts
- MEMS Applications in Space
- Conclusion

DARPA Mission

Information Technology

Information Awareness

Information Exploitation

Special Projects

Radical Innovation in Support of National Security

Microsystems Technology

Tactical Technology

Advanced Technology Defense Science

Microsystems Technology Office

Technology for Chip-Level Integration of E. P. M.

MEMS Application Domains

Pico Satellite Potential Applications

- Cooperative constellations
- Sparse aperture antennas
- Inspect and service missions
- Extremely agile launch-on-demand, shortterm, survivable and robust communications and surveillance space systems

Picosat Current Technology

Batteries and Keepers

DC/DC Converter Board

Radio and Sensor Boards

Thermal Isolation Bracket

Tether Spool, Flight Configuration

Subcomponents

- 1. Patch Antenna Panel
- 2. Electronics Module with *Rockwell Science Center* Radio and MEMS Switches
- 3. Picosat Body
- 4. Tether Spool
- 5. Tether Coupler
- 6. 50Ω Splitter Board

Antenna Panel: Front / Back

 50Ω Splitter

Tether Spool, Testing

Potential MEMS Components for Future Picosat

MEMS Navigation

Micropropulsion

High-density data storage

RF Communication Imager & Sensor

High energydensity power

MEMS Inertial Sensors

MEMS Actuators for Data Storage

Parallel atomic force imaging with MEMS to exceed densities of conventional magnetic and optical storage

Areal density: 1-100 Gb/cm² Transfer Rates: 0.1-10 Mb/s

Size: 0.5 cm³

Power consumption: <1W

Micropropulsion

Cold gas thruster

Microresistojet Thruster

2D nozzle in plastic

Digital Propulsion Chip

NMASP Program Goals

- Create arrays of precision, nano mechanical structures for RF-signal processing that will achieve
 - >100X reduction in size (80 cm² to 0.8 cm² or smaller)
 - >100X reduction in power consumption (300 mW to <3 mW)
 - >10X improvement in RF performance (spectral efficiency & bandwidth)
- Future Payoff
 - example: wristwatch-size UHF communicator/GPS receiver

Mechanical Resonators as Filters

Mechanical Analog Signal Processing

Signal Processing Possibilities

Chip-Scale Atomic Clocks

- Create ultra-miniaturized, low-power, atomic time and frequency reference units that will achieve:
 - >200X reduction in size (from 230 cm³ to <1 cm³),
 - >300X reduction in power consumption (from 10 W to <30 mW),
 and
 - Matching performance ($\pm 1 \times 10^{-11}$ accuracy \Rightarrow < 1µs/day).
- Examples of future payoffs:
 - Wristwatch-size high-security UHF communicator
 - Jam-resistant GPS receiver

CSAC Miniaturization Concept

Phase locking GHz resonator with miniature atomic-confinement cell:

- Optical excitation \Rightarrow use VSCEL, eliminate μ -wave cavity (large & power-hungry)
- Optical detection ⇒ use photo-detector
- Mechanical resonator ⇒ electrostatic and capacitive coupling

Military Applications of CSAC

Ultra-miniaturized, low-power, atomic time and frequency reference units:

>200X reduction in size, >300X reduction in power & performance $(\pm 1\times10^{-11} \text{ accuracy} \Rightarrow <1\mu\text{s/day})$

Clock accuracy of $1 \times 10^{-11} \Rightarrow 16$ -hour resynch interval or radio silence

9,000 commercial handheld GPS deployed in Desert Storm

Future of MEMS at DARPA

- Continue to establish new MEMS-enabled programs, both within MTO and in collaboration with other offices
- Continue to transition into DoD and commercial systems
 - Formation of the MEMS Industry Group